On the class of k-quasi-(n, m)-power normal operators
نویسندگان
چکیده
منابع مشابه
PROPERTY (ω) AND QUASI-CLASS (A,k) OPERATORS
In this paper, we prove the following assertions: (i) If T is of quasiclass (A, k), then T is polaroid and reguloid; (ii) If T or T ∗ is an algebraically of quasi-class (A, k) operator, then Weyls theorem holds for f(T ) for every f ∈ Hol(σ(T )); (iii) If T ∗ is an algebraically of quasi-class (A, k) operator, then a-Weyls theorem holds for f(T ) for every f ∈ Hol(σ(T )); (iv) If T ∗ is algebra...
متن کاملSeparating partial normality classes with weighted composition operators
In this article, we discuss measure theoretic characterizations for weighted composition operators in some operator classes on $L^{2}(Sigma)$ such as, $n$-power normal, $n$-power quasi-normal, $k$-quasi-paranormal and quasi-class$A$. Then we show that weighted composition operators can separate these classes.
متن کاملON N(k)−QUASI EINSTEIN MANIFOLD
In the present paper we have studied an N(k)-quasi Einstein manifold satisfying R(ξ, X).P̃ , where P̃ is the pseudo-projective curvature tensor. Among others, it is shown that if quasi-Einstein manifold with constant associated scalars is Ricci symmetric then the generator of the manifold is a Killing vector field. AMS Mathematics Subject Classification (2000): 53C25
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics
سال: 2020
ISSN: 2651-477X
DOI: 10.15672/hujms.656993